Skip to main content

Model Selection

Overview

The Model Selection system is responsible for determining which AI model is most appropriate for a given task within the Engineering AI Agent. This component optimizes for performance, cost-efficiency, and quality by dynamically routing requests to the most suitable models based on various criteria.

Core Components

Decision Service

The Decision Service is the brain of the Model Selection system, evaluating multiple factors to determine the optimal model for a specific request:

class DecisionService:
def select_model(self, task_data, constraints=None):
"""
Select the optimal model for a given task based on multiple criteria.

Args:
task_data: Information about the task including type, complexity, context length.
constraints: Optional constraints such as max_cost, max_latency, required_capabilities.

Returns:
selected_model: The model identifier that best matches the requirements.
"""
# 1. Analyze task requirements
task_requirements = self._analyze_task(task_data)

# 2. Get candidate models from registry
candidate_models = self.model_registry.get_candidates(task_requirements)

# 3. Apply filters based on constraints
if constraints:
candidate_models = self._apply_constraints(candidate_models, constraints)

# 4. Score models based on multiple criteria
model_scores = {}
for model in candidate_models:
performance_score = self.performance_monitor.get_score(model, task_requirements)
cost_score = self.cost_manager.get_score(model, task_data)
feature_score = self._calculate_feature_match(model, task_requirements)

# Combined score with customizable weights
model_scores[model] = (
performance_score * self.weights["performance"] +
cost_score * self.weights["cost"] +
feature_score * self.weights["features"]
)

# 5. Apply heuristics for special cases
model_scores = self.heuristics_manager.apply_heuristics(model_scores, task_data)

# 6. Select the highest scoring model
selected_model = max(model_scores.items(), key=lambda x: x[1])[0]

# 7. Log the decision for future analysis
self._log_decision(task_data, selected_model, model_scores)

return selected_model

Model Registry

The Model Registry maintains information about all available models, their capabilities, and current status:

{
"models": [
{
"id": "gpt-4",
"provider": "openai",
"size_category": "large",
"context_window": 8192,
"capabilities": ["code_generation", "reasoning", "instruction_following", "creativity"],
"specializations": ["software_development", "technical_writing"],
"performance_tier": "premium",
"cost_per_1k_tokens": {
"input": 0.03,
"output": 0.06
},
"average_latency_ms": 2500,
"status": "active"
},
{
"id": "gpt-3.5-turbo",
"provider": "openai",
"size_category": "medium",
"context_window": 4096,
"capabilities": ["code_generation", "reasoning", "instruction_following"],
"specializations": ["general_purpose"],
"performance_tier": "standard",
"cost_per_1k_tokens": {
"input": 0.0015,
"output": 0.002
},
"average_latency_ms": 800,
"status": "active"
},
{
"id": "claude-2",
"provider": "anthropic",
"size_category": "large",
"context_window": 100000,
"capabilities": ["code_generation", "reasoning", "instruction_following", "long_context"],
"specializations": ["documentation", "technical_analysis"],
"performance_tier": "premium",
"cost_per_1k_tokens": {
"input": 0.011,
"output": 0.032
},
"average_latency_ms": 3000,
"status": "active"
},
{
"id": "llama-2-70b",
"provider": "meta",
"deployment": "self_hosted",
"size_category": "large",
"context_window": 4096,
"capabilities": ["code_generation", "reasoning", "instruction_following"],
"specializations": ["general_purpose"],
"performance_tier": "standard",
"cost_per_1k_tokens": {
"input": 0.0005,
"output": 0.0005
},
"average_latency_ms": 4500,
"status": "active"
},
{
"id": "code-llama-34b",
"provider": "meta",
"deployment": "self_hosted",
"size_category": "medium",
"context_window": 16384,
"capabilities": ["code_generation", "code_completion", "debugging"],
"specializations": ["software_development"],
"performance_tier": "specialized",
"cost_per_1k_tokens": {
"input": 0.0004,
"output": 0.0004
},
"average_latency_ms": 3500,
"status": "active"
},
{
"id": "software-developer-specialized",
"base_model": "gpt-4",
"provider": "openai",
"deployment": "fine_tuned",
"size_category": "large",
"context_window": 8192,
"capabilities": ["code_generation", "debugging", "refactoring", "test_generation"],
"specializations": ["software_development"],
"performance_tier": "specialized",
"cost_per_1k_tokens": {
"input": 0.03,
"output": 0.06
},
"average_latency_ms": 2600,
"status": "active"
}
]
}

Performance Monitor

The Performance Monitor tracks and analyzes model performance across various dimensions:

class PerformanceMonitor:
def __init__(self, metrics_service):
self.metrics_service = metrics_service
self.performance_cache = {}
self.update_interval = 3600 # Update performance metrics hourly

def get_score(self, model_id, task_requirements):
"""Calculate a performance score for a model on a given task type."""
# Get recent performance metrics
metrics = self._get_recent_metrics(model_id, task_requirements["type"])

# Calculate success rate
success_rate = metrics.get("success_rate", 0.5) # Default if no data

# Calculate average latency normalized to expectations
latency_score = self._calculate_latency_score(
metrics.get("avg_latency"),
task_requirements.get("latency_sensitivity", "medium")
)

# Calculate quality score based on human feedback
quality_score = metrics.get("quality_rating", 0.5) # Default if no data

# Calculate error rate penalty
error_penalty = 1.0 - metrics.get("error_rate", 0)

# Combined weighted score
weights = self._get_weights_for_task(task_requirements["type"])
final_score = (
success_rate * weights["success_rate"] +
latency_score * weights["latency"] +
quality_score * weights["quality"] +
error_penalty * weights["reliability"]
)

return final_score

def _get_recent_metrics(self, model_id, task_type):
"""Retrieve recent performance metrics for the model on similar tasks."""
cache_key = f"{model_id}:{task_type}"

# Check if we have fresh cached data
if cache_key in self.performance_cache:
cache_entry = self.performance_cache[cache_key]
if time.time() - cache_entry["timestamp"] < self.update_interval:
return cache_entry["metrics"]

# Fetch new metrics
metrics = self.metrics_service.get_model_metrics(
model_id=model_id,
task_type=task_type,
time_window="7d" # Last 7 days
)

# Cache the results
self.performance_cache[cache_key] = {
"metrics": metrics,
"timestamp": time.time()
}

return metrics

Cost Manager

The Cost Manager optimizes model selection based on cost constraints and budget considerations:

class CostManager:
def __init__(self, budget_service):
self.budget_service = budget_service

def get_score(self, model_id, task_data):
"""
Calculate a cost-efficiency score for a model on a given task.
Higher score means better cost efficiency.
"""
# Get model cost information
model_costs = self.budget_service.get_model_costs(model_id)

# Estimate token usage for this task
estimated_tokens = self._estimate_token_usage(task_data)

# Calculate estimated cost
estimated_cost = (
estimated_tokens["input"] * model_costs["cost_per_1k_tokens"]["input"] / 1000 +
estimated_tokens["output"] * model_costs["cost_per_1k_tokens"]["output"] / 1000
)

# Get current budget status
budget_status = self.budget_service.get_budget_status()

# Apply budget considerations
if budget_status["status"] == "critical":
# Strongly prefer cheaper models when budget is critical
cost_score = 1.0 - min(1.0, estimated_cost / budget_status["avg_task_budget"] * 5)
elif budget_status["status"] == "warning":
# Prefer cheaper models when budget is warning
cost_score = 1.0 - min(1.0, estimated_cost / budget_status["avg_task_budget"] * 2)
else:
# Normal budget status
cost_score = 1.0 - min(1.0, estimated_cost / budget_status["avg_task_budget"])

return cost_score

def _estimate_token_usage(self, task_data):
"""Estimate the token usage for input and output based on task data."""
# Baseline estimations
input_tokens = len(task_data.get("prompt", "")) / 4 # Rough estimate: 4 chars per token

# Adjust based on task complexity
complexity_multiplier = {
"simple": 0.5,
"medium": 1.0,
"complex": 2.0
}.get(task_data.get("complexity", "medium"), 1.0)

# Estimate output tokens based on task type
output_token_estimates = {
"code_generation": 1000,
"text_generation": 500,
"summarization": 300,
"classification": 50,
"question_answering": 200
}

base_output_tokens = output_token_estimates.get(
task_data.get("type", "text_generation"),
300 # Default value
)

estimated_output_tokens = base_output_tokens * complexity_multiplier

return {
"input": input_tokens,
"output": estimated_output_tokens
}

Heuristics Manager

The Heuristics Manager applies special rules and considerations to model selection:

class HeuristicsManager:
def __init__(self):
self.heuristics = self._load_heuristics()

def apply_heuristics(self, model_scores, task_data):
"""Apply heuristic rules to adjust model scores based on special cases."""
adjusted_scores = model_scores.copy()

for heuristic in self.heuristics:
if self._should_apply_heuristic(heuristic, task_data):
adjusted_scores = heuristic["adjust_function"](adjusted_scores, task_data)

return adjusted_scores

def _should_apply_heuristic(self, heuristic, task_data):
"""Determine if a heuristic should be applied to this task."""
condition = heuristic["condition"]

if condition["type"] == "task_type":
return task_data.get("type") in condition["values"]

elif condition["type"] == "complexity":
return task_data.get("complexity") in condition["values"]

elif condition["type"] == "token_count":
estimated_tokens = task_data.get("estimated_tokens", {})
return estimated_tokens.get("input", 0) > condition["threshold"]

elif condition["type"] == "time_sensitivity":
return task_data.get("time_sensitivity") in condition["values"]

return False

def _load_heuristics(self):
"""Load heuristic rules from configuration."""
return [
{
"name": "prefer_specialized_for_code",
"condition": {
"type": "task_type",
"values": ["code_generation", "code_review", "debugging"]
},
"adjust_function": lambda scores, task: self._boost_specialized_models(scores, ["code_generation"], 1.5)
},
{
"name": "prefer_large_context_for_long_inputs",
"condition": {
"type": "token_count",
"threshold": 4000
},
"adjust_function": lambda scores, task: self._boost_models_by_feature(scores, "large_context", 2.0)
},
{
"name": "prefer_fast_models_for_interactive",
"condition": {
"type": "time_sensitivity",
"values": ["high", "critical"]
},
"adjust_function": lambda scores, task: self._boost_fast_models(scores, 3.0)
}
]

Request Handler

The Request Handler manages the flow of requests through the Model Selection system:

class RequestHandler:
def __init__(self, decision_service, model_clients):
self.decision_service = decision_service
self.model_clients = model_clients

async def handle_request(self, request):
"""Process an incoming model request, select model, and route appropriately."""
# Extract task data
task_data = self._extract_task_data(request)

# Extract constraints if any
constraints = request.get("constraints")

# Select the optimal model
selected_model = self.decision_service.select_model(task_data, constraints)

# Get the appropriate model client
model_client = self._get_model_client(selected_model)

# Pre-process the request for the selected model
processed_request = self._preprocess_request(request, selected_model)

# Send request to the model
try:
response = await model_client.generate(processed_request)
return {
"status": "success",
"model_used": selected_model,
"response": response
}
except Exception as e:
# Handle errors and possibly retry with fallback model
return await self._handle_model_error(e, request, selected_model)

async def _handle_model_error(self, error, request, failed_model):
"""Handle model errors with appropriate fallback strategies."""
# Log the error
logger.error(f"Error using model {failed_model}: {str(error)}")

# Get fallback models
fallback_models = self.decision_service.get_fallbacks(failed_model)

if not fallback_models:
return {
"status": "error",
"error": str(error),
"model_used": failed_model
}

# Try fallback models in order
for fallback_model in fallback_models:
try:
model_client = self._get_model_client(fallback_model)
processed_request = self._preprocess_request(request, fallback_model)
response = await model_client.generate(processed_request)

# Success with fallback
return {
"status": "success",
"model_used": fallback_model,
"fallback_from": failed_model,
"response": response
}
except Exception as fallback_error:
logger.error(f"Fallback error using {fallback_model}: {str(fallback_error)}")
# Continue to next fallback

# All fallbacks failed
return {
"status": "error",
"error": "All models including fallbacks failed",
"model_used": failed_model
}

Selection Criteria

Task Complexity Assessment

The system evaluates task complexity to match with appropriate model capabilities:

Complexity LevelCharacteristicsPreferred Model Size
SimpleBasic tasks, straightforward instructions, limited contextSmall
MediumMulti-step tasks, moderate context, standard reasoningMedium
ComplexAdvanced reasoning, specialized domain knowledge, creative tasksLarge
ExpertSystem design, complex problem-solving, nuanced understandingLarge + Specialized

Context Length Optimization

Model selection considers the input and expected output lengths:

Domain Specialization

The system maps task domains to specialized models:

DomainSpecialized ModelsCharacteristics
Software Developmentsoftware-developer-specialized, code-llama-34bCode generation, debugging, software architecture
Requirements Analysisrequirements-analyst-ftNatural language understanding, ambiguity detection
Quality Assuranceqa-specialist-ftTest generation, bug identification, edge case analysis
DevOpsdevops-engineer-ftInfrastructure as code, deployment scripts, monitoring
Technical Writingtechnical-writer-ftDocumentation, clear explanations, formatting

Cost Optimization Strategies

Different cost optimization strategies are applied based on budget status:

Budget StatusStrategyDescription
NormalBalancedConsider cost as one factor among many in selection
WarningCost-ConsciousGive higher weight to cost in selection criteria
CriticalMinimum ViableUse smallest/cheapest model that can accomplish the task
UnlimitedPerformance-FirstPrioritize performance and quality over cost considerations

Model Fallback Mechanisms

Fallback Chains

The system defines fallback sequences for different model categories:

{
"fallback_chains": {
"large_general": [
"gpt-4",
"claude-2",
"llama-2-70b",
"gpt-3.5-turbo"
],
"code_specialized": [
"software-developer-specialized",
"code-llama-34b",
"gpt-4",
"gpt-3.5-turbo"
],
"requirements_specialized": [
"requirements-analyst-ft",
"gpt-4",
"claude-2",
"gpt-3.5-turbo"
]
}
}

Fallback Triggers

Fallbacks are activated based on specific trigger conditions:

  1. Service Unavailability: API errors, timeouts, or service disruptions
  2. Rate Limiting: When usage quotas are exceeded
  3. Context Overflow: When input exceeds model's context window
  4. Quality Threshold: When confidence in output quality is below threshold
  5. Specialized Failure: When a specialized model fails at its primary task

Routing Strategies

Load Balancing

The system implements load balancing across equivalent models:

def load_balance_requests(models, request_history):
"""Distribute requests across equivalent models based on current load."""
model_loads = {}

# Calculate current load for each model
for model in models:
recent_requests = request_history.get_recent(model, window="5m")
current_requests = request_history.get_in_progress(model)

# Calculate load score
load_score = len(current_requests) + (len(recent_requests) * 0.2)
model_loads[model] = load_score

# Find the model with minimum load
min_load_model = min(model_loads.items(), key=lambda x: x[1])[0]

return min_load_model

Scheduled Routing

Different routing policies can be scheduled based on time periods:

{
"routing_schedules": [
{
"name": "business_hours",
"active": {
"days": ["monday", "tuesday", "wednesday", "thursday", "friday"],
"hours": [9, 10, 11, 12, 13, 14, 15, 16, 17]
},
"policy": "performance_priority"
},
{
"name": "off_hours",
"active": "outside_business_hours",
"policy": "cost_priority"
},
{
"name": "weekend",
"active": {
"days": ["saturday", "sunday"]
},
"policy": "balanced"
}
]
}

Request Preprocessing

Dynamic Prompt Optimization

The system adapts prompts based on the selected model:

def optimize_prompt_for_model(prompt, model_id, model_registry):
"""Optimize a prompt for a specific model's capabilities and limitations."""
model_info = model_registry.get_model(model_id)

# Get model-specific optimization rules
optimization_rules = get_optimization_rules(model_id)

optimized_prompt = prompt

# Apply model-specific optimizations
for rule in optimization_rules:
optimized_prompt = apply_optimization_rule(optimized_prompt, rule)

# Handle context length limitations
if len(optimized_prompt) > model_info["context_window"] * 3.5: # Approximate tokens
optimized_prompt = truncate_prompt(optimized_prompt, model_info["context_window"])

# Add model-specific formatting
optimized_prompt = format_for_model(optimized_prompt, model_id)

return optimized_prompt

Context Windowing

For long inputs that exceed context limits, the system implements context windowing:

def apply_context_windowing(full_context, query, model_context_limit):
"""Apply a sliding window approach for long contexts."""
if len(full_context) + len(query) <= model_context_limit:
return full_context + query

# Calculate how much context we can keep
available_context_space = model_context_limit - len(query) - 100 # Buffer

# Strategy 1: Keep most recent context
recent_context = full_context[-available_context_space:]

# Strategy 2: Summarize older context
older_context = full_context[:-available_context_space]
summary = generate_summary(older_context)

# Combine summarized older context with recent context
windowed_context = summary + "\n\n" + recent_context

return windowed_context + query

Monitoring and Feedback

Performance Metrics

The system tracks key metrics for continuous improvement:

MetricDescriptionUsage
Success RatePercentage of successful completionsModel reliability assessment
LatencyResponse time by model and task typePerformance optimization
Token EfficiencyOutput quality per token usedCost optimization
Fallback RateFrequency of fallback activationReliability improvement
User SatisfactionFeedback ratings from usersQuality assessment

Feedback Loop

Continuous improvement through automated and human feedback:

Deployment Configuration

Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
name: model-selection-service
namespace: engineering-ai-agent
spec:
replicas: 3
selector:
matchLabels:
app: model-selection-service
template:
metadata:
labels:
app: model-selection-service
spec:
containers:
- name: model-selection-service
image: engineering-ai-agent/model-selection:latest
ports:
- containerPort: 8080
env:
- name: REDIS_URL
valueFrom:
secretKeyRef:
name: model-selection-secrets
key: redis-url
- name: METRICS_SERVICE_URL
valueFrom:
configMapKeyRef:
name: service-endpoints
key: metrics-service
- name: BUDGET_SERVICE_URL
valueFrom:
configMapKeyRef:
name: service-endpoints
key: budget-service
resources:
requests:
memory: "256Mi"
cpu: "100m"
limits:
memory: "512Mi"
cpu: "300m"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /health/ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5

API Endpoints

The Model Selection system exposes the following API endpoints:

EndpointMethodDescription
/models/selectPOSTSelect optimal model for a given task
/modelsGETList all available models with capabilities
/models/{id}GETGet detailed information about a specific model
/models/{id}/performanceGETGet performance metrics for a specific model
/fallbacks/{id}GETGet fallback chain for a specific model
/healthGETHealth check endpoint

Testing Strategy

Unit Testing

Tests for individual components:

  • Decision service logic
  • Cost calculation algorithms
  • Performance scoring mechanisms
  • Fallback handling

Integration Testing

Tests for interactions between components:

  • End-to-end model selection process
  • Metrics collection and analysis
  • Load balancing behavior

Simulation Testing

Simulation of various scenarios:

  • High load conditions
  • API failures and timeouts
  • Budget constraint scenarios
  • Complex task processing

Future Enhancements

  1. Reinforcement Learning: Using RL to optimize model selection based on outcomes
  2. Predictive Routing: Anticipating load patterns and preemptively adjusting routing
  3. Multi-model Ensembles: Combining results from multiple models for critical tasks
  4. Automated A/B Testing: Systematic comparison of different routing strategies
  5. User Preference Learning: Tailoring model selection to individual user preferences
  6. Adaptive Cost Management: Dynamic budget allocation based on business priorities
class HeuristicsManager:
def __init__(self):
self.heuristics = self._load_heuristics()

def apply_heuristics(self, model_scores, task_data):
"""Apply heuristic rules to adjust model scores based on special cases."""
adjusted_scores = model_scores.copy()

for heuristic in self.heuristics:
if self._should_apply_heuristic(heuristic, task_data):
adjusted_scores = heuristic["adjust_function"](adjusted_scores, task_data)

return adjusted_scores

def _should_apply_heuristic(self, heuristic, task_data):
"""Determine if a heuristic should be applied to this task."""
condition = heuristic["condition"]

if condition["type"] == "task_type":
return task_data.get("type") in condition["values"]

elif condition["type"] == "complexity":
return task_data.get("complexity") in condition["values"]

elif condition["type"] == "token_count":
estimated_tokens = task_data.get("estimated_tokens", {})
return estimated_tokens.get("input", 0) > condition["threshold"]

elif condition["type"] == "time_sensitivity":
return task_data.get("time_sensitivity") in condition["values"]

return False

def _load_heuristics(self):
"""Load heuristic rules from configuration."""
return [
{
"name": "prefer_specialized_for_code",
"condition": {
"type": "task_type",
"values": ["code_generation", "code_review", "debugging"]
},
"adjust_function": lambda scores, task: self._boost_specialized_models(scores, ["code_generation"], 1.5)
},
{
"name": "prefer_large_context_for_long_inputs",
"condition": {
"type": "token_count",
"threshold": 4000
},
"adjust_function": lambda scores, task: self._boost_models_by_feature(scores, "large_context", 2.0)
},
{
"name": "prefer_fast_models_for_interactive",
"condition": {
"type": "time_sensitivity",
"values": ["high", "critical"]
},
"adjust_function": (lambda scores, task: self._boost_fast_models(scores, 3.0)) # Fix: Added parentheses around lambda function
}
]