Skip to main content
Version: 0.0.1

MCP Server Architecture

The MCP (Model Context Protocol) Server is the core component that enables AI assistants and clients to interact with Slack through a standardized protocol. This document details the architecture, components, and implementation of the MCP server.

Overview

The MCP Server implements the Model Context Protocol specification, providing Slack integration capabilities through a set of registered tools. It supports multiple transport mechanisms and offers a flexible, extensible architecture for Slack API interactions.

Core Components

Server Instance (server.py)

The main MCP server implementation using the mcp library:

from mcp.server import Server

server = Server("slack-mcp-server")

Key Responsibilities:

  • Tool registration and management
  • Request routing and processing
  • Response formatting and validation
  • Error handling and logging
  • Transport mechanism management

Tool Registry

The server registers six primary MCP tools for Slack integration:

1. slack_post_message

  • Purpose: Send messages to Slack channels
  • Input: Channel ID, message text, optional thread timestamp
  • Output: Message posting confirmation and metadata

2. slack_read_channel_messages

  • Purpose: Retrieve messages from Slack channels
  • Input: Channel ID, optional count and cursor parameters
  • Output: Array of channel messages with metadata

3. slack_read_thread_messages

  • Purpose: Retrieve messages from specific thread
  • Input: Channel ID, thread timestamp, optional count
  • Output: Array of thread messages with metadata

4. slack_thread_reply

  • Purpose: Reply to existing threads
  • Input: Channel ID, thread timestamp, reply text(s)
  • Output: Reply posting confirmation and metadata

5. slack_read_emojis

  • Purpose: Retrieve workspace emoji information
  • Input: Optional cursor for pagination
  • Output: Array of custom and default emojis

6. slack_add_reactions

  • Purpose: Add emoji reactions to messages
  • Input: Channel ID, message timestamp, emoji name(s)
  • Output: Reaction addition confirmation

Transport Mechanisms

The MCP server supports three transport options:

stdio Transport

# Default transport for command-line usage
async def main():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(read_stream, write_stream, InitializationOptions())

Characteristics:

  • Standard input/output communication
  • Ideal for subprocess integration
  • Minimal network overhead
  • Synchronous request-response pattern

Server-Sent Events (SSE)

# SSE transport for web applications
sse_app = server.sse_app(mount_path="/mcp")

Characteristics:

  • HTTP-based event streaming
  • Browser-compatible
  • Real-time bidirectional communication
  • Automatic reconnection support

HTTP Streaming

# HTTP streaming transport
http_app = server.streamable_http_app()

Characteristics:

  • RESTful HTTP endpoints
  • Streamable responses
  • Compatible with HTTP clients
  • Stateless request handling

Data Flow Architecture

Configuration and Initialization

Environment Variables

  • SLACK_BOT_TOKEN: Slack bot token for API authentication
  • MCP_TRANSPORT: Transport mechanism selection
  • MCP_MOUNT_PATH: Mount path for HTTP transports
  • LOG_LEVEL: Logging verbosity control

CLI Arguments

slack-mcp-server \
--transport sse \
--mount-path /mcp \
--log-level INFO

Initialization Flow

  1. Environment Loading: Load configuration from environment variables
  2. Client Creation: Initialize Slack API client with bot token
  3. Tool Registration: Register all MCP tools with the server
  4. Transport Setup: Configure selected transport mechanism
  5. Server Start: Begin listening for MCP requests

Error Handling

Error Categories

  • Authentication Errors: Invalid or missing Slack tokens
  • API Errors: Slack API rate limits or service errors
  • Validation Errors: Invalid input parameters
  • Network Errors: Connection issues with Slack API

Error Response Format

{
"error": {
"code": "SLACK_API_ERROR",
"message": "Channel not found",
"details": {
"slack_error": "channel_not_found",
"channel": "C1234567890"
}
}
}

Security Considerations

Token Management

  • Secure token storage in environment variables
  • Token validation before API requests
  • No token persistence or logging
  • Automatic token refresh handling

Request Validation

  • Input parameter validation using Pydantic models
  • Type checking and sanitization
  • Rate limiting awareness
  • Error message sanitization

Performance Optimization

Async/Await Pattern

@server.call_tool()
async def handle_slack_post_message(
arguments: SlackPostMessageInput
) -> list[types.TextContent]:
# Async Slack API call
response = await slack_client.chat_postMessage(...)
return [types.TextContent(type="text", text=str(response))]

Connection Pooling

  • Reuse of HTTP connections to Slack API
  • Efficient resource management
  • Automatic connection cleanup

Response Caching

  • Optional caching for read operations
  • Configurable cache TTL
  • Cache invalidation strategies

Extensibility

Adding New Tools

  1. Define input/output models in slack_mcp/mcp/model/
  2. Implement tool handler function
  3. Register with @server.call_tool() decorator
  4. Add comprehensive error handling
  5. Include usage documentation

Custom Transport Implementation

  1. Implement transport-specific server setup
  2. Add transport option to CLI
  3. Update configuration handling
  4. Test with MCP clients

Tool Composition

  • Tools can call other tools internally
  • Shared utility functions
  • Common error handling patterns
  • Consistent response formatting

Monitoring and Debugging

Logging

  • Structured logging with context
  • Request/response tracing
  • Error stack traces
  • Performance metrics

Health Checks

  • Server liveness probes
  • Slack API connectivity checks
  • Token validation status
  • Transport mechanism health

Metrics

  • Tool usage statistics
  • Response time tracking
  • Error rate monitoring
  • Client connection metrics

This architecture provides a robust, scalable, and maintainable foundation for MCP-based Slack integration while supporting multiple deployment patterns and use cases.