MCP Server Architecture
The MCP (Model Context Protocol) Server is the core component that enables AI assistants and clients to interact with Slack through a standardized protocol. This document details the architecture, components, and implementation of the MCP server.
Overview
The MCP Server implements the Model Context Protocol specification, providing Slack integration capabilities through a set of registered tools. It supports multiple transport mechanisms and offers a flexible, extensible architecture for Slack API interactions.
Core Components
Server Instance (server.py)
The main MCP server implementation using the mcp library:
from mcp.server import Server
server = Server("slack-mcp-server")
Key Responsibilities:
- Tool registration and management
- Request routing and processing
- Response formatting and validation
- Error handling and logging
- Transport mechanism management
Tool Registry
The server registers six primary MCP tools for Slack integration:
1. slack_post_message
- Purpose: Send messages to Slack channels
- Input: Channel ID, message text, optional thread timestamp
- Output: Message posting confirmation and metadata
2. slack_read_channel_messages
- Purpose: Retrieve messages from Slack channels
- Input: Channel ID, optional count and cursor parameters
- Output: Array of channel messages with metadata
3. slack_read_thread_messages
- Purpose: Retrieve messages from specific thread
- Input: Channel ID, thread timestamp, optional count
- Output: Array of thread messages with metadata
4. slack_thread_reply
- Purpose: Reply to existing threads
- Input: Channel ID, thread timestamp, reply text(s)
- Output: Reply posting confirmation and metadata
5. slack_read_emojis
- Purpose: Retrieve workspace emoji information
- Input: Optional cursor for pagination
- Output: Array of custom and default emojis
6. slack_add_reactions
- Purpose: Add emoji reactions to messages
- Input: Channel ID, message timestamp, emoji name(s)
- Output: Reaction addition confirmation
Transport Mechanisms
The MCP server supports three transport options:
stdio Transport
# Default transport for command-line usage
async def main():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(read_stream, write_stream, InitializationOptions())
Characteristics:
- Standard input/output communication
- Ideal for subprocess integration
- Minimal network overhead
- Synchronous request-response pattern
Server-Sent Events (SSE)
# SSE transport for web applications
sse_app = server.sse_app(mount_path="/mcp")
Characteristics:
- HTTP-based event streaming
- Browser-compatible
- Real-time bidirectional communication
- Automatic reconnection support
HTTP Streaming
# HTTP streaming transport
http_app = server.streamable_http_app()
Characteristics:
- RESTful HTTP endpoints
- Streamable responses
- Compatible with HTTP clients
- Stateless request handling
Data Flow Architecture
Configuration and Initialization
Environment Variables
SLACK_BOT_TOKEN: Slack bot token for API authenticationMCP_TRANSPORT: Transport mechanism selectionMCP_MOUNT_PATH: Mount path for HTTP transportsLOG_LEVEL: Logging verbosity control
CLI Arguments
slack-mcp-server \
--transport sse \
--mount-path /mcp \
--log-level INFO
Initialization Flow
- Environment Loading: Load configuration from environment variables
- Client Creation: Initialize Slack API client with bot token
- Tool Registration: Register all MCP tools with the server
- Transport Setup: Configure selected transport mechanism
- Server Start: Begin listening for MCP requests
Error Handling
Error Categories
- Authentication Errors: Invalid or missing Slack tokens
- API Errors: Slack API rate limits or service errors
- Validation Errors: Invalid input parameters
- Network Errors: Connection issues with Slack API
Error Response Format
{
"error": {
"code": "SLACK_API_ERROR",
"message": "Channel not found",
"details": {
"slack_error": "channel_not_found",
"channel": "C1234567890"
}
}
}